Automatic Spectral Target Recognition in Hyperspectral Imagery

نویسنده

  • HSUAN REN
چکیده

Automatic target recognition (ATR) in hyperspectral imagery is a challenging problem due to recent advances of remote sensing instruments which have significantly improved sensor’s spectral resolution. As a result, small and subtle targets can be uncovered and extracted from image scenes, which may not be identified by prior knowledge. In particular, when target size is smaller than pixel resolution, target recognition must be carried out at subpixel level. Under such circumstance, traditional spatial-based image processing techniques are generally not applicable and may not perform well if they are applied. The work presented here investigates this issue and develops spectral-based algorithms for automatic spectral target recognition (ASTR) in hyperspectral imagery with no required a priori knowledge, specifically, in reconnaissance and surveillance applications. The proposed ASTR consists of two stage processes, automatic target generation process (ATGP) followed by target classification process (TCP). The ATGP generates a set of targets from image data in an unsupervised manner which will subsequently be classified by the TCP. Depending upon how an initial target is selected in ATGP, two versions of the ASTR can be implemented, referred to as desired target detection and classification algorithm (DTDCA) and automatic target detection and classification algorithm (ATDCA). The former can be used to search for a specific target in unknown scenes while the latter can be used to detect anomalies in blind environments. In order to evaluate their performance, a comparative and quantitative study using real hyperspectral images is conducted for analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery

Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...

متن کامل

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Refined Target Recognition in Hyperspectral Imagery Based on Spectral Reflectance and Derivative Information

A hyperspectral image can be considered as an image cube where the third dimension is the spectral domain represented by hundreds of spectral wavelengths. A hyperspectral image pixel is actually a column vector with dimension equal to the number of spectral bands and contains valuable spectral information that can be used to detect and identify a variety of nature and man-made material. Some sp...

متن کامل

Improvement of the Classification of Hyperspectral images by Applying a Novel Method for Estimating Reference Reflectance Spectra

Hyperspectral image containing high spectral information has a large number of narrow spectral bands over a continuous spectral range. This allows the identification and recognition of materials and objects based on the comparison of the spectral reflectance of each of them in different wavelengths. Hence, hyperspectral image in the generation of land cover maps can be very efficient. In the hy...

متن کامل

Analysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques

Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH) happened in 2010. For t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001